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* 1 INTRODUCTION AND SUMMARY

This report describes our research activities on Contract DACA76-8. C-0009 for the
period June 1, 1987 through May 31, 1988. The contract title "Knowledge-Based Vision
Techniques" is part of the DARPA Strategic Computing Program and is monitored by5the U.S. Army Engineer Topographic Laboratories.

Our main research topic has been the detection of moving objects and the estima-
tion of the three-dimensional motion of the object, along with the estimation of the
three-dimensional structure of the object. Within the context of the Autonomous Land
Vehicle (ALV), motion estimation aids in detecting and tracking moving objects, tracking
obstacles, and in determining the true motion of the ALV itself. A brief statement of
the problem of motion analysis is: given a number of views of a scene, determine some
correspondence between the views, and then determine the three-dimensional motion of
objects in the scene. Methods differ on the meaning of correspondences, how many are
required and in the formulation of the motion estimation equations.

Two basic approaches to motion analysis are the optical flow (short range) and feature
point (long range) methods. Observations by psychologists, that the relative "flow" of
scene points as projected on the retina can be used to determine the relative depth
of objects, led computer vision researchers to the idea of optical flow. Rather than
rely on direct computation of correspondences, these techniques use constraints on the
smoothness of the surface (and thus the flow) and solve various equations that relate3 image values in consecutive images. These computations are limited to small motions
between views and have proven to be unstable and unreliable in the general(real image)
case. Optical flow methods are appealing in the ALV task for computing global (vehicle)

S motion since using all the flow data should average the errors out, but these methods have
not been able to overcome their basic computational problems in this case. Sometimes
these techniques are called short range methods since they assume that the position
changes between views are small and that the views are closely spaced in time. This
leads to a substantial computational load both in processing all the image points to solve
for optic flow and in processing the large number of image frames.

The other methods, called feature point or long range techniques, attempt to solve
many of the same problems using far fewer points in each image. These use a small3 set of corresponding points from the image sequence to compute the three-dimensional
motion and structure. Different methods require different numbers of points in various
numbers of frames under different assumptions. Generally, a set of equations, which
encapsulate the constraints imposed by the assumptions (rigidity, small motions, etc.)
are solved to derive the three-dimensional motion parameters. Often the formulations
are very sensitive to noise in the input data and that makes the results unstable. Early

1
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approaches concentrated on using only two views of a scene, but these pairwise motion
estimates must then be combined to get the true motion estimate. In order to capture
the important constraints imposed by an extended sequence of views, we developed a
technique to estimate the motion parameters using five frames for general motion and
three frames for translational motion. This formulation has been given in the past annual
reports and in [1].

We have adopted the feature based approach with more than two frames for most of
our motion work, but have also explored some other techniques. Our effort has been in all
aspects of feature-based motion analysis, including feature extraction, feature riatching,
motion estimation, and system integration. Our major effort the past year has been in
feature matching, especially edge-based contours, with continuing work in developing a
more integrated complete motion sy.Aem. Other work includes spatio-temporal analysis
of closely spaced image sequences and a further development of the multiframe motion
equations that may lead to some simplifications and an increase in generality to handle
some accelerations in the motion. We have also increased the number of test sequences
available for testing of the integrated system and all the subsystems.

The following sections disc .ss the developments for this past year in the four research
areas in more detail. The first section describes our continuing effort in matching groups
of adjacent edge points (contours). The past work used straight line approximations to the
contour (segments) and worked on pairs of images. This technique has been extended to
find matches of individual edge points on the contour, using the segment based contour
matches for context, and to trac.k these matches through many frames. The segment
matching restricts the search area for the "chain matching" algorithm that is applied
to the individual edge points. This multi-level approach combines the robustness of a
segment matching technique with the precision of the individual edge point matching.
This technique extends to allow tracking the matching points through a long sequence
of frames and thus can provide substantial amounts of data to the motion estimation

* program.

The next section discusses our efforts in analyzing and extending the multi- frame
motion estimation approach. The homogeneous coordinate representation for rigid trans-
formations is extended by adding time as an explicit component. The coefficients of this
matrix representation are the constant coefficients of a nonhomogeneous system of lin-
ear difference equations. The motion parameters are easily calculated from the natrix
coefficients, which are computed from the system of difference equations using the corre-
sponding points in a sequence of views of the moving scene. This representation captures
not only constant motion (constant rotation and translation), but also some cases of ac-
celerated 3r non-rigid motion, e.g. a constant deformation while translating, acceleration
in the direction of the axis of rotation, or acceleiation (in any direction) of an object that
has only a translational component of motion.

2
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i The third section outlines our new results in the spatio-temporal analysis of image
sequences. This work uses very closely spaced images to first derive the image-plane
velocity of connected edge points (curves). The carves can be broken at occlusion bound-
aries based on changes in the , elocity between two portions of the curve. Compared to
other techniques, this method explicitly handles occlusions.

The fourth section discasses our methodology for building a motion system by inte-
grating th,. set of existing programs. We also present some early results in this process.
This work is a continuation of the basis integration effort described in the past report with
more emphasis on the generality of the design, by allowing for several different feature
extraction and matching techniques.

The final section of this report describes our plans for future research. These plans in-
volve the further dc, tlopment of the contour matching system, more efforts at integration
and continued testing of all subsystems on more image sequences.

This report describes the work of several researchers in ou group. The con.our
matching work was done by Salit Gazit with Gerard Medioni. The analysis and extension
of motion estimation was performed by Wolfgang Franzen. The spatio-temporal work is
by Shou-Ling Peng with Gerard Medioni The system integration work is by Keith Price
and Igor Pavlin.I
References

fl] Hormoz Shariat. The Motion Problem: How To Use More Than Two Frames. PhD
thesis, University of Southern California, Octobec 1986. USC IRIS report 202.
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* 2 CONTOUR CORRESPONDENCES IN DYNAMIC
IMAGERY

Motion analysis is an important research area within the field of Computer Vision, and
plays a central role in biological systems. Sophisticated mechanisms for observing, ex-
tracting and utilizing motion exist even in simple animals. Processing image sequences
via computers has various applications in the medical, biological, industrial, military and
other fields. Several approaches have been tried for computational analysis of motion
from image sequences, and many of them need a set of matching points or matching fea-
tures for the motion analysis. Therefore matching features between consecutive frames is
an important step in motion analysis. This problem is more difficult than model or stereo
matching which assume additional constraints such as shape preservance or epipolar lines,
since objects may move, change shape, disappear, etc.

This paper is devoted to the problem of identifying corresponding points in two time
varying images of a moving object (or objects). We assume that the maximal distance
between corresponding features is known, to restrict the search space.

The major difficulty in matching arises due to the need for making global correspon-
dences. A local point or area in one image may match equally well with a number of points
or areas in the other image. These ambiguities in local matches can only be resolved by
considering sets of local matches globally and imposing some preference criterion.

The various matching algorithms differ in the primitives used for matching, the
method used for local matching and the method used for global matching, if any. The
basic primitive in our algorithm is a section of a super-segment, where a super- segment
is an object dually defined as both a connected list of edgel points and a connected list
of line segments, and a section is some arbitrary portion of a super-segment. We use
segment matching merely as an initial guide to section matching, so unlike other segment
matching algorithms [1,2,3], we are able to use important features such as continuity
along the super-segments and sections of arbitrary (not only linear) shape and length for
matching.

For local matching we use shape similarity between sections of super-segments and
for global matching we use relaxation in the translation space. We believe that using
sections of super-segments removes many of the problems resulting from segment or edgel
matching, since the continuity information can be better preserved than in segments,
which have the collinearity constraint, or edgels which do not contain any continuity

i information and the area between sections is much more reliable than merely "similar
orientation". Using sections of arbitrary shape yields, we believe, a better match than
using only linear segments, since curvature implies a much stricter constraint on the
match. We allow these sections to grow as long as the area between them remains small,

I4
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so we get very long reliable matches, which correspond to object boundaries.

Section 2.1 describes previous methods, section 2.2 contains the description of the
algorithm, and section 2.3 presents the results and conclusions.

E 2.1 Existing Methods

2.1.1 Area based methods

U Given two gray-level images, one would like to find a corresponding pixel for each pixel in
each of the images, but the semantic information conveyed by a single pixel is too low to
resolve ambiguous matches, so it becomes necessary to consider an area or neighborhood
around each pixel. Three types of schemes can be found:

Differencing Schemes ([4,5,6,7] and others), a simple and fast method which is widely
used. These systems tend to fail if the motion is small, illumination is not constant or
the moving object is not easily distinguishable, and can be confused by noise.

Correlation Schemes were applied to measure cloud motion [8], traffic control [9] and
to radar images [6]. They tend to fail in featureless or repetitive texture environment, are
confused by the presence of surface discontinuity in the correlation window, are sensitive
to absolute intensity, contrast and illumination and their complexity heavily depends on
the size of the correlation window.

Gradient Schemes [10,11,12] are widely used for calculation of optical flow, and assume
that the motion between successive images is very small, so they are very sensitive to
noise.I
2.1.2 Feature based methods

I These systems match features derived from the two images rather than the intensity
arrays directly. The commonly used features have been edgels, linear line segments and
corners (points of high curvature). These systems are usually faster than area based
systems since they consider much fewer points, yet preserve significant points. On the
other hand a lot of pre-processing is needed to extract the features, and due to the sparse
data these systems do not produce a dense matched map. Existing methods include graph
matching techniques [13], relaxation [14,15], region matching [161 (useful when there is a
significant change between frames, but tends to fail when there is occlusion) and more.fl Matching edgels suffers from some of the limitations of the area based systems, since
edgels are still very low-level. One isolated edgel is not very distinguished, so groups of
edgels need to be taken in order to disambiguate matches.

I5
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I A line segment (or just segment) is a linear approximation of connected edgel points
and as such has some continuity information inherent to it, yet is local enough, so that
the chance that a segment belongs to two physical objects is very small. Each segment
contains information about its length, direction and position. Line segments are easy to
represent and manipulate. Systems which match line segments exist mostly for Stereo
image processing [2,3,17] and for image-model matching [1]. The main idea in these
systems is essentially to locally slide two descriptions over each other for maximal fit.
This approach guides our algorithm also.

2.2 Description of the Method
H 2.2.1 Primitives

We believe that the feature-based correspondense schemes have strong advantages over
area-based schemes, because feature based systems consider much fewer points and are
therefore faster than area based systems. By using features such as edgels, curves obtained
by spatially linking these edgels, or even some approximation of these curves, the system is
less susceptible to errors resulting from noise, change in illumination, etc. Curves formed

m of connected edgel points usually correspond to object boundaries, so the reduction in
the amount of information does not necessarily mean reduction in the quality of the
information.
Edgels however seem too local to be chosen as primitives. The advantages of line segments
were already discussed. We use segment matching as an initial step in our algorithm.
When we try to evaluate matches however, the disadvantages of segments come into
view: they are at best only approximations of the "actual" curve and sometimes a bad
approximation (a circle for example). A curve may be broken into segments differently
depending on the segment fitting algorithm and on the amount of noise. The exact
position of a match is not known because the segment matcher can only tells us that a
line segment matches some other line segment but not which pizels actually match. Also
most segment matching algorithms do not use the continuity between the segments. For
these reasons, we have decided to use curves or super-segments which are objects each
having an ordered list of segments belonging to the super-segment and a description of its
curve as a chain of the "actual" points of the super-segment. Also each segment knows
which super-segment it belongs to and the position in the super-segment chain where it
fits. An example of this "dual representation" is given in figure 2-1.

The input is obtained by computing zero crossings [18] of convolution with Laplacian
of Gaussian masks [19] to get the edgels, then link the edgels and finally fit curves by
piecewise linear segments [20]. The curves produced in this method are long, closed
and relatively not noise sensitive, but their locations and shape may not be accurate (as

* 6Ia
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H Sa - A super-segment

{al, a2, a3, a4} - its segments.

Figure 2-1: Example of a super-segment

explained in [19]).
Since continuity plays a very important role, we prefer zero crossings to other alternatives
such as edgels produced by step masks [21] which have more accurate location, but the
curves they produce are usually shorter and more noise sensitive. Another reason for
using zero crossings of LoG masks is the fact that in moving from a large mask to a
smaller mask we get additional edgels but no edgels disappear, which may be useful for

* a top-down approach.

2.2.2 The matching algorithm

The following is the general outline of our algorithm; the details are presented in the next
subsections.

We match segments initially to obtain initial section segment matches, then divide
each section point list into "pieces" (or sub-sections) and search for a best fit piece for
each, trying to extend these pieces in the process. We evaluate these matches using
relaxation in the translation space, and then remove overlapping (non-unique) matches,
based on similarity in both shape and translation.

* The Matching Algorithm

1. For each line segment in one image, find a subset of segments in the other image
that can match this segment. (See section 2.2.3)

2. Match super-segments sections based on similarity in shape:

(a) For every pair of maximal connected matching segment lists, define an initial
match as the initial sections corresponding to these segment lists.
(See section 2.2.4, step 1)

I 7Ieto



I (b) Divide each (left) section into smaller pieces, and find for each piece the "most
similar" piece in any matching section.
(See section 2.2.4, step 2)

(c) Extend each match by adding adjacent points to the pieces matched, so that
the similarity error measure is minimized.
(See section 2.2.4, step 3)

3. Relaxation step: Remove matches for which not enough support exist, iterating
until no matches are removed. (See section 2.2.5)

4. Remove overlapping matches. (See section 2.2.6)

I 5. Repeat once again steps 3, 2c and 4 (in that order).

In the next sections we discuss some of the steps in more detail.

I Notation

Let IMAGE 1 and IMAGE 2 be the images to be matched,E A = {ai} be the set of segments in IMAGE2,
B = {bj} be the set of segments in IMAGE 2,
SA = {s,,} be the set of super-segments in IMAGE1
and SB = {si,} be the set of super-segments in IMAGE 2.
We use this notation since SA (SB) is actually a partition of A (B).
Also let the mazimal disparity d be the maximal distance two corresponding features may

* have (measured in pixels).

I 2.2.3 Matching segments

The following algorithm computes for each segment ai E A a subset of segments bj e B
* that can match ai:

For each segment ai E A define a window w(ai) in which corresponding segments from
B must lie, and define a similar window for segments in B. We have used a rectangular
window parallel to the segment with width 2d and height 2d + i, as w(ai). Note that
bE w(a,) => ai E w(bi).

Let ai E A, bj E B be two segments with orientations 8j, Oj and length i, lj respectively.
We say that aj matches bj if the following conditions hold:

I

I
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/\d /\b3

\b2

\/

bl

Left segment a matches right segments {bl,b2},
but not b3 (orientation). d is the maximal disparity..

I Figure 2-2: Example of matching segments

bj E w(ai), ai and bj have "similar" orientation (the similarity measure is defined by
equation 1), and the middle point of the shorter segment must intersect the window of
the other segment. -1 1

12, l l )
I and I are constants. We used 0 = and I = 1. (See [22]). Figure 2-2 contains an

example of matching segments.

I 2.2.4 Matching super-segments based on shape similarity

Note: Depending on the context, a super-segment is an ordered list of segments or an
ordered list of edgels comprising the segments.

Definition 1 The position of a point in a super-segment is the arc length of the point.

Definition 2 A section of a super-segment is a connected list of edgels, which is a part of
the super-segment (Note that segments and super-segments are a special case of section).
A piece is a portion of a section.

See figures 2-3 and 2-5 for an example.

The following algorithm computes initial section matching based on similarity in the
I shapes of the sections:

1. Initially two super-segments s., and sb, can match if any of their segments match,
and for each super-segment a let Sp(s) be the set of its possible matching sections,

I9
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I which are simply the maximal consecutive sub-chains which segments correspond.
(see figure 2-3).

2. For every pair of matching sections (P, Q), divide P into pieces, so that P = {p1, P2 .... pk}.
Using the segment matches, find a corresponding piece q to every piece pi (in the
same fashion as before). Note that the "actual match" for p is probably contained
in qi, and therefore we need to search for it. We "slide" p along qi searching for
the match with the lowest similarity error measure.

The similarity error measure is the area of the match over the total number of points
in the two matching pieces squared. Figure 2-4 illustrates the idea. Appendix A
contains a description of an efficient algorithm to compute the area between two

*matching sections.

3. For each match (pi,in,) try to "extend" it by adding neighboring points as longfas the error (computed in the same way as above) decreases. To reduce time
complexity we used a binary search type extension (see figure 2-5).

Notes

3 Matching each piece is done independently, so non unique matches are allowed, since we
hope that at least one will "catch" its correct location. Dividing the initial large section
into smaller pieces is necessary since the sections often do not fully match, but portions
of them do (due to motion of objects, changes in illumination, occlusion or errors of
the edge detector). Extending the matches is necessary, as long matches are much more
reliable than shorter ones, so good matches are better distinguishable from bad ones.

We chose a bottom up approach, in which we break the initial matching sections
into small enough pieces and try to match each such section, then try to extend the
match as long as the shape of the curve is similar enough (Another option is to determine
where is the best place to "break" a super-segment, but this is complicated, since it
requires finding corners, junctions and other high level features, and may fail when we
have occlusion and motion). The size of the initial pieces was chosen as where I is
the length of the shorter of the two initially matching sections. This was a compromise
figure between having a constant number of pieces per section (which penalized long
sections) and having a constant piece size (which penalized short sections).

I 2.2.5 Relaxation step

In this step we evaluate matches using a global criterion, namely similarity in 2-D trans-
lation of neighboring matches (similar to other matching algorithms). We discard a

* 10
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U al P1 Q bi

* -- -- Q2

2 a2 -

Ua
* Q3

P3 a4

I Sa Sb

Sa, Sb - super-segments
{al,a2,a3,a4} - segments of Sa, {bl,b2,b3} - segments of Sb.
P1, P2, P3 - sections of Sa, QI, Q2, Q3 - their initial matching sections.

Matching is based on segment matching : al-bl, al-b2, a2,-b2, a2-b3, a4-b3.

Figure 2-3: Example of matching super-segment sections

IQ

* P
Score of the match (P, Q) is the area between
them (colored) over the total number of points
in the two sections squared.

Figure 2-4: Area between two sections (P, Q) (Q translated to :tart where P starts)
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Sa Sb

Extension of the match:
Initially the inner sections only match, then they are
extended until the score becomes worse.

Figure 2-5: Example of matching super-segment sections

match if the total number of points in matches which support it is below some threshold
value (defined later). The support is based on "similar" average translation within some
neighborhood.

Definition 3 j.4 is a neighbor of so, if the distance between their closest points is less
than the mazimal disparity.

The neighbors can be computed in the same way as the initial matches were computed
in the previous section.

Let de correspond to the expected error in the "real" position (after compensating for
the motion) of the object (d, should be 0 if no rotation, expansion or errors of the edge
detector occur, but is usually larger). We used a (the space constant of the LoG filter)
when we did not expect a major change in the shape (due to expansion), since the error
in the position of the edgels depends on a. Otherwise we used the maximal disparity

(supplied by the user).

Let Mj = (pi,mj) be some match with with translation (X7 , -j) where pi is a section
of a super-segment g, and m is a section of a super-segment s,. A match Mhk = (Ph, Mk)
can support Mi, if Ij - -AI _ d. and [- - y- _1 d., it is not too short (its length is at
least o,), either sah is a neighbor of sa, or s., has no neighbors and either sab is a neighbor

12
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E of si , or Sb, has no neighbors. Note that M,1 can support itself. Mij is kept if the total
length of the matches that can support it is above a certain threshold or one of these
matches is long enough. (our threshold was half the sum of the average length of the
matches and the length of the longest match, and a match was long enough to support
alone if its length was at least 2o%)

* We iterate until no matches are removed.

I 2.2.6 Removal of overlapping matches

Let M 1 = (P, Q) and M 2 = (0, R) be two matches. We say that M, and M 2 overlap
if either P and 0 are sections of the same left super-segment se,, and have points in
common, or Q and R are sections of the same right super-segment sb,, and have points
in common.

I Assume (w.l.o.g.) the first case, then two possiblities exist:

* Partial overlap

9 Complete overlap.

S The two cases are illustrated in figure 2-6. In both cases the solution is to take the
better match and the remainder of the other match. In the example of figure 2-6, we
take matches M 2 and the remainder (the non overlapping portion) of M 1 . In the second
case, we prefer M 3 .

To evaluate matches we try to use both the similarity in shape and in translation.
We say that a match M is better than a match N if the score of M (as computed by the
previous step) + (1000 over the number of points in supporting matches) is lower than
that of N.I
2.2.7 Why repeat the previous steps ?

I In the algorithm to match sections based on shape similarity, each section was matched
and extended independently. Therefore we expect a lot of overlapping matches. For
example, consider the case of matching two identical super-segments of length 1: we
divide the first to log(1) sections and then extend each independently, so we end up with
log(l) identical matches. The overlap-removal algorithm will remove log(l) - 1 of these
matches. In all our experiments the number of matches was significantly reduced after this
step. If many matches were removed, there can now be matches with not enough support
(see section 2.2.5), so we need to apply the relaxation again. If two overlapping matches
were divided by the overlap-removal algorithm, and then one of them was removed by

13
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I P1

I overlap

UP2 R2

MI = (P1,QI) partially overlaps M2 =(P2,R2)

IP3 Q3

P4 overlap R

The match M3 =(P3,Q3) contains the match

M4 = (P4,R4).

Figure 2-6: The two overlap possibilities
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I the relaxation, the remaining one can now be extended again. Therefore we apply the
step to extend matches again and then remove the new overlaps created by extending
the matches.

Theoretically we can then repeat the relaxation again, then extending and so on. How-
ever, the changes at this stage are expected to be minor, and since we cannot guarantee
convergence, we do it only once.

2.2.8 Combining matches along the sequence

Matching two images is useless if a way to combine matches along the sequence is not
offered. Most matching algorithms ignore the problem, though for some (edgel matching
algorithms) the solution is straight forward.

In our case, as already mentioned, we have section matches for sections of arbitrary
length and shape. If section P (in frame 1) matches section P2 (in frame 2) and section Q2
(in frame 2) matches section Q3 (in frame 3),then sections P2 and Q2 must have one of the
following relations: Either they have no points in common, one of them is a sub-section of
the other, or they partly overlap. Combining these matches is, of course, possible only in
the last two cases. This problem is very similar to the overlapping of matches discussed
previously. Indeed these two cases are partly illustrated in figure 2-6. Our solution is
fairly similar too. We compute the overlapping sub-section of P2 and Q2, say R 2 and
then find R1, the sub-section of P (in frame 1) that best matches R2. R3 is computed in
a similar way. The result is a match (R1 , R2, R 3 ). This process can be iteratively applied
to obtain multiple matches (M1,M 2,... ,M) for k frames. To eliminate bad multiple
matches (if a pair of matches was erronous, the whole multiple match is incorrect), the
variance in the 2-D translations between successive frames is threshoded.

We applied this simple algorithm to the sequences in the results section and it seems
to perform well.

Problems with this method are mainly that it can only handle sections that match
throughout the sequence. Disappearance of points (due to occlusion or disappearance of
objects from the images) cannot be handled by this simple algorithm. In addition, this
method will discard a long multiple match if one of the matching pairs is wrong (and so
the variance between matches is large). It would be better to detect this error instead.
We are working now on extending the method to handle these problems.

I 2.3 Results

We applied our algorithm on a number of real images, indoor as well as outdoor scenes.
As long as the shapes of objects in the sccne (as projected in the image) did not change

15
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I much, the results were very good. The results are shown by displaying only those points
for which a match was found, and drawing an arrow to the closest point in the other
section (after translating to start at same location). The arrow is drawn for every fifth
point in a matching section for each matching section), for clarity.

We give five examples, in each of whichIsubfigures (a),(b) contain two matched original images,
subfigures (c),(d) contain the super-segments obtained from the zero crossings of the

convolved images,
subfigure (e) contains the result of the matching
and subfigure (f) contains result of combining matches along the sequence.

I 1. Figures 2-7 contains two 512 x 512 pixels images taken from a sequence of a road
scene (o = 10, d = 25). Both the observer and the other car are moving. Subfigure
(f) shows result of combining the sequence along 91 frames, actually matching only
every sixth frame (so combining 15 matches).

2. Figures 2-8 contain two 512 x 512 pixels images of a car crossing the observer
view-point (o = 10, d = 30). The algorithm performed well on the image, even
though the disparity was large, which shows that the location of the match does
not matter much, as long as the shape does not change significantly between the
frames. Subfigure (f) shows result of combining matches along 5 frames.

3. Figures 2-9 contains two 256 x 256 images of an office scene (a = 5, d = 10). The
camera faces the direction of motion, so we expect objects to expand. Subfigure
(f) shows result of combining matches along the sequence, using 26 frames but

* matching only every fifth frame (5 matches).

4. Figures 2-10 contains two 256 x 256 images of a corridor (a = 5,d = 10). The
,:amera faces the direction of motion, so we expect objects to expand. Subfigure
(f) shows result of combining matches along the sequence, using 16 frames but
matching only every fifth frame (3 matches).

I 5. Figures 2-11 contain two 256 x 256 images of an outdoor scene of trees (a = 5, d =
10). This is a lateral motion case, which is made hard by the large disparity
differences, and therefore most stereo algorithms will not match it successfully. We
did not use the knowledge that motion is only lateral and allowed search in all
directions, yet the algorithm was able to match the scene quite well. Usine: the
epipolar constraint would probably improve the result.

The images in Figures 2-9, 2-10 and 2-11 were obtained from SRI International, cour-Itesy of Dr. Bolles.

*I 16
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I 2.4 Conclusions and Future Work

We have shown an algorithm to compute correspondence between 2 frames with very
few constraints. We suggested the use of super-segments and sections of super-segments.
Correspondence was based on shape similarity between matching sections and on trans-
lation similarity between matches, and demonstrated some results on a number of real
images.

The advantages of our method were discussed in the previous sections: the use of
continuity and sections of arbitrary shape and size in matching, the use of length of a
match, evaluation of matches based both on shape and on common translation.

H SomL comments are in order:

* The algorithm has a very heuristic flavor.

* The algorithm performs best on long curved contours, so it seems to best fit for
matching zero crossings curves or region contours. We plan to try applying it to
regions and to curves of the same image, processed with different LoG masks.

* We may get better results for stereo pairs by applying this algorithm with the
epipolar constraint, as it can handle sharp changes in disparity, as demonstrated
by example 2-11.

* The figure computation is made in 2-D only, but we can find the actually corre-
sponding points using areas of high curvature or even the simple method we used
for displaying the results (a left point matches the closest point in the translated
matching right sectioa). These point-to-point matches can be used for motion esti-
mation in 3-D. We are currently working on using the Motion Estimation algorithm
developed in [23]. This algorithm uses matching points in three or more frames to
estimate 3-D motion and location of points in frames as wAl as give some error mea-
sure to the match. Since using the Motion Estimation algorithm requires matches
in multiple frames, an algorithm to combine the results of matching pairs of images
will be useful.

A Computing area between two sections

The following is a general idea of the computation of area between two matching sections
(some of the details have been left out). The idea is to translate the right section to have
same starting point as the left section, and add points to ensure that the last point is

*17
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(a) Frame 1 (b) Frame 2

(c) Zero crossings of (a) (d) Zero crossings of (b)

I4 4.96

(e) Matches of (c),(d) 18 (f) Multiple matches

Figure 2-7: Advancing car
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I also the same (we might have to remove remaining points from the sections). We get two
sections which start and end points are the same, so we have a cycle. We find all simple
cycles (cycles which do not cross themselves -nd compute the area for each by a simple
procedure. Figure 2-4 illustrates the idea.

The algorithm:

IAssume sections P = (PI , P2 ,. ... Pk) and Q = (Q1, Q2,.. ., Qi) are possible matches,
where P = (ei,yif) and Q, = (z!,y?'). Translate Q to start at P1 . Define an intersection

I point as a point P such that there is a point Qi in the translated Q, such that Pi = Qj
(Note that P = Qj). Find all intersection points (this can be done linearly by drawing
the left section in the plane and traversing the translated right section). The points of
the two sections which lie between two adjacant intersection points form simple cycles.
The sum of the areas of the simple cycles is the area of the match. We compute it by
assigning every cycle point (z, y) a score s = z, - XP where z,, and zx are the x coordinate
of the next and previous points on the cycle. Let A[z] = ((y,sj),...,(y,a,s.)) a sorted
scan line. The area of the cycle along the scan line is the sum of all distances for which
the accumulated score is non-zero.

The algorithm is linear in the number of points of the two sections, except where we
sort the rows. This step requires -log(r) time, where r is the number of points of this
scan line. It will usually be a constant though, since points along horizontal lines have
score zero and therefore do not affect the sum and can be eliminated.
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* 3 NATURAL REPRESENTATION OF MOTION IN
SPACE-TIME

The analysis of motion in time-varying imagery is an active research area in computer
vision. There are a number of good surveys on the subject, such as [1].

Over the last few years, there has been an increasing trend of imposing constraints
in addition to rigidity, such as constancy of motion, to facilitate the analysis of motion,
or to solve the structure from motion problem. In his now classic work, Ullman [2]
originally solved the structure from motion problem (orthograhic projection) for four
points in three frames, using no assumption other than rigidity. The best recent work,
that imposes additional contraints, is that of Shariat [3], who studied objects undergoing
uniform translation and rotation. Among other cases, he solved the structure from motion
problem (perspective projection) using only three points in three frames.

The approach presented in this paper is somewhat different. Rather than explicitly
putting contraints on motion, we start with systems of equations whose solution leads to
nontrivial, but mathematically tractable, classes of motion. The proper selection of such
a system is a matter of physical and mathematical intuition. Rigid motion of the form
described in this paper is more general than the motion studied by Shariat, and often
allows the solution of the structure from motion problem for the same number of points in
the same number of frames, as in his case. What is more important, this representation

I also allows the study of structure from nonrigid motion. With the notable exception of
[4], [5], [6], and [7], relatively little work has been done on the quantitative analysis and
representation of nonrigid motion.

In the following, we begin with a brief review of homogeneous coordinates. Then a
generalization of homogeneous coordinates, that we call chronogeneous coordinates, is
described. (The term chronogeneous is actually a contraction of chrono-homogeneous).
After introducing some additional notation, we derive a vector equation that expresses
the position of a point, at an arbitrary juncture in time, in terms of its initial positionH and the matrices describing the motion of the object and the motion of the camera.
Then a characterization of chronogeneous motion is given, with particular emphasis on
rigid motion. A novel result involving the recovery of absolute depth from a monocular
image sequence is presented. Finally, we summarize what we believe to be the major
contributions of this work, and discuss future research.

II
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m 3.1 Homogeneous Coordinates

Rigid transformations of bodies are typically represented using homogeneous coordinates.
Homogeneous coordinates were introduced by Roberts in (8]. (91 also provides a good
overview of homogeneous transformations. The usefulness of this representation stems
form the fact that rigid transformation and perspective are expressible in matrix form.
The homogeneous coordinate representation of the 3D point (z, Y, z) T is any 4D point of
the form (Wz,Wy,wz,&) T where w 3 0. The value of the last component, w, is normally
taken to be 1, until a perspective projection operator is applied.

In the following, let XsD be the 3D position of a point, and let X4D be its corresponding
homogeneous representation. Also, let 4sD and 4D represent corresponding transformed
positions of these points. A general homogeneous transformation may be expressed as

4D = 'i4D

where [ hi h 12 h1 3 h 14

1H= h21 h22 h23 h 24

h31 h3 2 h33 h34
m h 4 1 h 4 2 h 4 3 h 4 4

is the homogeneous transformation matrix.

A general rigid 3D tranformation may be expressed as

where Z 3 D1 r12D rT

Ti1 '2  1"13 ]
[r21 r22 r23

r31 r32 733

is a rotation matrix, and T = (t, t 2 ,t 3 )T is a translation vector.

m The same transformation is expressed more succinctly in homogeneous coordinates as

4D = ?ii4D

where
mmr~ rll112 r"13 t1

[ r21 r22 r23 t 2

r31 r32 r33 t3
m0 0 0 1
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I Despite the usefulness of homogeneous coordinates for representing a rigid transfor-
mation between two frames, this representation does not lend itself to describing motionKin multiframe imagery. This is due to the fact that even for relatively simple kinds of
motion, the homogeneous transformation matrix changes from one frame to the next.
Some examples of simple types of motion that yield changing 1H-matrices are:

1 * The ballistic motion of a (nonrotating) ball accelerating due to the force of gravity.

* The motion of a (nonrotating) camera on a uniformly accelerating vehicle.

* The motion of a spinning top that is rolling across the floor (assume no precession).

e The motion of a wheel of a car moving at a constant velocity, when viewed from
the side.

Ideally, one would like to describe motion in such a way that the motion parame-
ters corresponding to commonly occuring types of motion are constant over time. This
motivates the following extension to homogeneous coordinates, which allows the natural
description of the above types of motion, as well as other types, even nonrigid motion.

3.2 Chronogeneous Coordinates

This section describes a generalization of homogeneous coordinates in the time domain,
which we call chronogeneous coordinates. The homogeneous coordinate representation is
extended by augmenting it to encode time explicitly. The chronogeneous coordinate repre-
sentation of the 3D point (z, y, z) T at time t is any 5D point of the form (wx, wy, wz, t, w)T

where w - 0. The value of the last component, w, is normally taken to be 1, until a per-
spective projection operator is applied. Note that the factor w does not multiply the time
component. Whereas the spatial components of a point, at least conceptually, range over
a continuous set of values, the time component is discrete and only takes on values which
are multiples of AT, where l/AT is the frame rate of the imaging system. The frameKrate is assumed to be a known constant.

Except for the perspective projection matrix discussed below, we will consider only
chronogeneous transformation matrices of the following form, which we call standardKchronogeneous matrices:

3l 21 s2232 72 P2

C= 331 s 3373 = 000 o ]it (1)
0 0 0 1 bt L 0o 0l I0l 1
0 0 0 0 1
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fl Since almost all the chronogeneous matrices we discuss are standard, we often drop this
designation.

The value of the element 6t, of C, is restricted to being an integer multiple of AT.
In fact, the value will always be a known multiple of AT. Therefore, this representation
has 15 degrees of freedom and, in general, represents nonrigid motion. We sometimes
refer to the submatrix, S, of C, as the structural deformation submatriz, or simply the
deformation submatriz. If S is a rotation matrix, then C represents a rigid transformation
and has only 9 degrees of freedom. The subvector r = (-1172 7 s)T has units of velocity,
but roughly encodes information about acceleration, and the subvector P = (P1,P2,Ps)T

has units of displacement, but roughly encodes information about velocity.

The matrix, C, is equivalent to the following 3D transformation:

3D(t + 6 = Si3(t) + tf + P (2)

In addition, it causes the time to be incremented by the amount 8t. If S is a rotation
matrix, and if we drop the dependence on time and view tr + P as the translation vector,
then the above vector equation reduces to the general rigid 3D transformation. Vector
equation (2) is a nonhomogeneous system of first order linear difference equations with
constant coefficents. Therefore, the theory of linear difference equations may be used to

*study solutions of this equation.

3.3 Common Notation and Assumptions

This section defines some common notation and assumptions that are used throughout
the remainder of the document.

3.4 Special Chronogeneous Matrices and Operators

This section introduces some often used chronogeneous matrices, as well as the perspectiveI division operator. The (5 x 5) identity matrix is denoted by Ts. Similarly, the (3 x 3)
identity matrix is denoted by .3.

The following matrix, T, leaves the spatial location of a point unaltered, but advances
the time component by one interframe time interval:

1000 0
0 1 0 0 0

T= 0 0 1 0 0 (3)
0 0 0 1 AT
0000 1 
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I. The following equation holds:

I I,
T z = (z (4)

St t+AT

We now define the perspective projection matrix, P. In our work, we use left.handed
coordinate systems. For the camera coordinate system, the z-axds points in such a way
that positive distances are in front of the camera. For simplicity, and without loss of
generality, we assume that all distances are measured in the same units (this includes
image plane coordinates). Then, with the camera coordinate system centered on the
camera lens center,
S1 0 0 0 0

0 1 0 0 0
= 00 1 0 0 (5)

0 0 0 1 0
0 0 1/1f 0 0

where f is the focal length of the camera. Alternatively, if the camera coordinate system
is centered on the image plane, then

1 0 0 0 0
f 0 1 0 0 0

'P= 00 1 0 0 (6)
0 0 0 1 0
0 0 1/f 0 -1

The following operator, V, is used in conjunction with P to define the image plane
coordinates of a point in terms of its camera chronogeneous coordinates. The operator
V is defined as
SY X/W

V z Y/W (7)

3.4.1 Coordinate Notations

Consider an image sequence, taken by a moving camera, consisting of "nf" images (0
through nf - 1), and consider a moving object having "np" points (0 through np - 1)
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I that are visible in each of these images. We assume that both AT, the interframe time
interval, and f, the focal length of the camera, are known constants. Let Qij refer to
the position of the jth point at the ith discrete instant in time. We add a superscript
to indicate in which reference frame and in what type of coordinates the position of the
point is expressed.

I Q is a point expressed in chronogeneous coordinates in the camera reference frame.

is the spatial (3D) part of the point -',

Q, is a point expressed in image plane 2D coordinates. It is the exact projection of the

point Q ,. onto the image plane.

Q7'. is the actually measured location of the point Qi,j (in image plane 2D coordinates).
It includes any "correspondence noise".

The following relationship expresses exact image plane coordinates in terms of camera
chronogeneous coordinates: I = V[ 1 JQ1J]  (8)

where P is the perspective projection matrix, and V is the perspective division operator.IAssume that both the object and the camera are undergoing uniform chronogeneous
motion. Let A be the (rigid) chronogeneous matrix that describes the motion of the
camera. It describes a new camera position relative to the current instantaneous camera
position. Let B be the chronogeneous matrix describing the motion of the object. Note
that 6tA = 6tB = AT.

3.5 Derivation of the "Coordinate Transformation Vector Equa-
I tion"

The purpose of this section is to derive the coordinate transformation vector equation.
This equation expresses the current chronogeneous position of a point in terms of its
initial position, and the matrices describing the motion of the camera and the motion
of the object. We first consider two subclasses of motion, and then derive the general

coordinate transformation vector equation.

3.5.1 The case of a camera moving through a static environ! -ent

Consider a camera undergoing chronogeneous motion through a static environment. Mo-
tion of the camera has an inverse effect on object coordinates. Let us be more specific. Let
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I us introduce the chronogeneous matrix AiR such that A = TAR, that is AR = T-1 A. The
matrix T was defined previously, and causes time to advance by one "tick". The matrix
AR represents the spatial transformation that takes place between successive positions of
the camera. Then the following relationships hold:

AR(T-'Q +1 j) = IJ

and

=TAR-1Qcj -7'(T-1A) - =i TA TQ

and therefore

= ("Ta 1 ) Qo1  (9)

If the camera is stationary, then AR = Is, A = T, and QS,, = TQC,,.

I 3.5.2 The case of a stationary camera viewing a moving object

Consider a stationary camera viewing an object that is undergoing constant chrono-
geneous motion. The new camera chronogeneous coordinates of a point on the object are
simply obtained by multiplying the current coordinates by B, that is:

+,= B(Qj

and in general
Q j= B ,j(10O)

If the object is stationary, then B = T, and Qs,j = T'Q0,j.

3.5.3 Simultaneous camera and object motion

I After considering the previous two cases, derivation of the coordinate transformation
vector equation is straightforward. If the camera were stationary, then the chronogeneous
position corresponding to the th image of a point would be B'QcJ. If we consider only the
spatial transformation involved, then the new position of the point due to object motion
is T-'B'QCJ. However, this point is viewed by a camera that has undergone motion.
Therefore the composite effect is given by:

Q, = (TA-T)'T-'B'Q (11)

The matrices in equation (11), the coordinate transformation vector equation, do not
commute, and so the equation cannot be simplified. The implication of this vector equa-
tion is that, in general, simultaneous camera and object motion is not correctly modeled
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I by either camera motion alone or object motion alone. This is due to the fact that, in
general, there is no matrix, C, such that C' = (TA-1 T)'T-'B'. However, for every pure
camera motion there is a pure object motion that has an identical effect on coordinate
positions, and vice versa.

U 3.6 A Characterization of Constant Chronogeneous Motion

This section gives a characterization of the classes of motion that are representable by
constant coefficient standard chronogeneous matrices. The following subsections dis-
cuss specific subcases in more detail. In each case we show how the components of the
chronogeneous matrix are determined by the underlying parameters of motion, and how
the motion parameters may be computed, given a chronogeneous matrix. At the end of
this section, we briefly touch on the structure from chronogeneous motion problem.

Consider an arbitrary constant coefficient standard chronogeneous matrix, with de-
formation submatrix S. This matrix represents the motion of some object, which isI translating through space and structurally deforming according to the matrix S. In ad-
dition, if the matrix expression (I - S) is singular, the object may also be accelerating
in a direction orthogonal to the subspace (of 3-space) spanned by (13 - S).

To make the foregoing more concrete, consider the case of a rigid object. In this
case, the deformation submatrix S is a rotation matrix, call it Z. The matrix expression
(13 - 'R) is singular. This is easily seen as follows. Let A be the (unit length) axis of
rotation vector associated with R?. Then

i (Zs- -n - - =-
(13 - lA= -A A A

As the null space of (13 - R) contains a nonzero vector, this matrix expression is singular.
Although we do not prove it here, (13 - RZ) is actually of rank 2, unless R = 13. Therefore,

if 7 # 13, A spans the nullspace of (13 - R), and the general case of rigid chronogeneous
motion corresponds to a rigid object rotating with fixed angular velocity, translating
through space, and accelerating in the direction of the axis of rotation.

Figure 3-1 gives a taxonomy of the classes of rigid chronogeneous motion. These
are discussed in the remainder of this section, after a discussion of the case of general
deformation, with (13 - S) nonsingular.

I 3.6.1 A translating deforming object

Consider an object undergoing "constant deformation" about a center of deformation
that is undergoing pure translation. Let f be the position of the center of deformation
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rigid chronogeneous motion

ni form translation and rotatioI

pure acceleIration Fgid homogeneous motioI
I

Figure 3-1: Taxonomy of Rigid Chronogeneous Motion

at the ith discrete instant in time. Then the following equation recursively determines
the 3D position of a given point on the object, for a given deformation matrix S:

-41) = S( Q8 - 4F)
I For a translating object, F = Fo + t 7 = 80 +iVAT, for some initial center of deformation,

80, and velocity vector, V. The above equation may then be rewritten as follows:

Ii~~ = (i' - 4) +,F4+l

= S( -i(o + iVAT)) + (Fo + (i + 1)VAT)

=SQ8j- S80-iSVAT + 8 + AT + VAT

= SQf, + i(13 - S)VAT + (13 - S),o + VAT

I SQf. + t(1 3 - S)V + (1 - S)6 + VAT

The chronogeneous matrix representing the same motion is:

H[ S (1 3 -S)V (1 3 - S)C-±1+AT
S 0B1[o 10 1 AT (12)0 0 0 1 0 1 1
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I We assume (13 - 3) is nonsingular. Then given an arbitrary matrix

B =[ 0 0 1 ATl
0 0 0 IO 1

I Iwe may compute the parameters of motion, V and -, as follows:

v = (zS r (13)

160 = (13 - S) - AT) (14)

I 3.6.2 Rigid chronogeneous motion: general case

Consider the case where the deformation is actually a rigid rotation, RZ. Assume R i 13.

The case 1- = 13 corresponds to pure acceleration, and is treated elsewhere.

As discussed in the introductory remarks to this section, the general case of rigid

chronogeneous motion corresponds to a rigid object rotating with fixed angular velocity,

translating through space, and accelerating in the direction of the axis of rotation. The
following recursive relationship holds

I(Q,.+lj - 4+,) = R(Q.1 - 4),

* where we may write

= Fo + tv - 7 t2A= Co + iVAT- Ii 2
7 A(AT)2

for some initial center of rotation, c0, initial velocity vector, IV, and signed magnitude of
acceleration, -y. The axis of rotation, A, is determined by 7Z. Substituting the formula
for the position of the center of rotation into the recursive relationship, and simplifying,
we obtain:

0 Q+j = 7IQ + t((13 - IZ)V - 7IAT)

+ (Is - IZ) Fo + VAT- 1-fl(AT

I The chronogeneous matrix representing the same motion is:

-TAIAT - 17,4(AT)2 (15)

000 0 1 AT
i0 1010 0 1
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IWe now derive expressions for the motion parameters, ol V, and 7, in terms of 9?, A,
r, P, and AT. The following relationships express the vector components of B in termsfof the motion parameters:

= (/3- I)V--y AT (16)
1 = (13 - IZ)Ci0 + VAT - -yA(AT) 2  (17)

We first derive an expression for 7. From equation (16):

f = .((3 - -R)1- 7 -AT)

- ((13- R) V)- (X1)AT=~ -f"AT

= -- AT

*and therefore
" -(A.)/AT

In the above, the symbol "-" indicates dot product.

Next, we derive an expression for V. From equation (17):
* kP = ~.(- 1 -+ VT)

A. A~.((i 3 - 7?)F + AVAT - 1=~~~ ~ A[(2s 7))+.(VAT) - p(AA)(AT)2

1 = 0+ (AV)AT- !(-(A.r)/AT)(AT) 2

= (A.V)AT + (A-.r)AT

*and therefore

If = ((!.P) - (.)')AT)/AT1~ - (P/AT - 1f)
In the following, the symbol "+" used as an exponent denotes the pseudoinverse opera-
tion. Readers who are unfamiliar with the pseudoinverse are referred to [10]. The pseu-
doinverse is a generalization of the inverse that also applies when the matrix is not square,
or not of full rank (as in the following). We make use of the fact that (13 - Z)+A =6.
The initial velocity vector, V, is determined as follows:

V = (I3 - I)+(13 - %)V + (X.V)A

= (13 - "R)+(r + fAT) + (1.V)A
= (13 - lZ)+ + f(13 - 7Z)+XAT + (Z(/AT -f))

= - (13 - 9Z)+rL + (A.(P/AT- f))X
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I Finally, we derive an expression for cO. The initial center of rotation, c0, is not uniquely
determined. Adding any real multiple of A to c0 results in a physically indistinguishableEmotion. The derived value of c0 is the minimum length solution. From equation (17):

8= (23 - -9)+((P - VAT + !-fA(AT) 2 )

= - 'X)+(P - VAT)

= (13 - R)+(f- ((13 - I)+f + (X.(PIAT - lf))X)AT)

* = (23 - 7Z)+(P; - (13 - 7Z)+FAT - (A4.(P/AT - lf)),AT)

= (13 - -)+ (I - )AT)

I In summary, the motion parameters may be computed as follows:

-t = -(A-f)/AT (18)

V = (23 - Vz)+r + (A.(P/AT - lf))X (19)

* o = (273 - 7Z)+(P - (23 - 7Z)+fAT) (20)

E 3.6.3 Uniform translation and rotation

For this subclass of rigid chronogeneous motion, 0 = . This class of motion has eight
degrees of freedom. There are three degrees of rotational freedom, three degrees of
freedom for the velocity vector, and two degrees of freedom for the center of rotation.
The chronogeneous matrix representing this motion is:

B= 0 0 0 1 AT (21)

I 3.7 Rigid Homogeneous Motion

This case corresponds to the class of motion representable by homogeneous transforma-
tions. f = 0 in this case, and this class of motion has six degrees of freedom. For
R 13, a general motion of this class consists of rotation, coupled with a restricted
form of translation. Translation, if any, occurs in the direction of the axis of rotation.
This may more commonly be described as helical or "barberpole" motion. The following
recursive relationship holds

(Q:+I, -4,+) = R(Q:, -
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I where
C= Co+ tV4 =8o + ivAAT

E for some initial center of rotation, o, and (signed) magnitude of velocity, v. The chrono-
geneous matrix representing this motion is:

* 6 (T, I -R)8+ AT]
B= 0 0 0 1 T (22)

[0100 1

Given a chronogeneous matrix of the above form, the motion parameters, v and C-,
*may be computed as follows:

V = (A.)/AT (23)

I = (1 -'9)+p (24)

E 3.7.1 Pure rotation

Pure rotation is a subclass of rigid homogeneous motion, with v = 0. This class of
motion has five degrees of freedom. There are three-degrees of rotational freedom, and
two degrees of freedom for the center of rotation. The recursive relationship simplifies to

(qi+1, - C-) = Iz(i', - co)

and the chronogeneous matrix corresponding to this motion is

*R 0 01 -(I Z)F 1
B [01010 1 AT J (25)

~010 01 1

3 3.7.2 Pure acceleration

For this subclass of rigid chronogeneous motion, R? = 13. This class of motion has six
I degrees of freedom. The following relationships hold:

Ij= Q', + tv - 2 1
- Q. + iVAT - i2-A(AT)2

for some initial velocity vector, iV, magnitude of acceleration, y, and axis of acceleration,
I . When comparing this subclass of motion to the general case, we see that there is no
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I reference to a center of rotation, and the axis of rotation has been replaced by an axis
of acceleration, that is free to point in any direction. The recursive relationship for this

I motion is
nQI,# = Q[# - t-yAAT + VAT - 17yi(AT) 2

and the chronogeneous matrix representing this motion is

, -AAT VAT - 1yA(A) 2

B = 0 1 AT 1 (26)
000 0 1 

I Given a chronogeneous matrix, with S = R= 1, the motion parameters, 7, A, and
V, may be computed as follows:

I 7 = II/IIAT (27)
A = -/ll (28)

I V -- P/AT- if (29)

The signs of equations (27) and (28) are chosen to be consistent with equation (18), and
so that 7 is nonnegative.

E 3.7.3 Pure translation

For pure translation, R = I, and = O. This class of motion has three degrees of
freedom. The recursive relationship simplifies to

= Q:. + VAT

I which implies
=f Q' - + tV QO", + ilVAT

The chronogeneous matrix corresponding to this motion is

13z 16 VAT I
B 0-- 0 0 _ AT] (30)

0 0 0 1

I and the following relationship expresses V in terms of the P subvector of B:

V = P/AT (31)
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3.7.4 Structure from chronogeneous motion

The author is currently working on solving the structure from motion prolem for an
object undergoing constant chronogeneous motion. Details of the solutions will be pre-
sented in a future paper. Table 1 summarizes the number of frames required to solve this
problem for a given number of points, for both rigid and nonrigid motion.

Rigid Chronogeneous Motion Nonrigid Chronogeneous Motion

* Points Frames Points Frames
1 6 1 9
2 4 2 5

* 3 3 3 4
5- 1 3

Table 1: Number of Frames Required to Solve SFM Problem

3.8 Recovery of Absolute Depth from a Monocular Image Se-
quence

U In this section, we present a novel application of the methodology developed in this
paper. We show how, under certain circumstances, absolute depth may be recovered
from a monocular image sequence.

Assume that a (rigid) object, undergoing constant chronogeneous motion, is imaged
by a stationary camera (perspective projection). Let us ignore any measurement or
correspondence error, and assume that the strucjre from motion problem has been
solved for chronogeneous motion. (We will present a solution to this problem in an
upcoming paper). Let

JZT ZT PT_
BT1= 10 1 AT

010 f0 0 1i
be the "true" matrix representing the motion of the object, and let

7Z ' s P,'
HS 0T4700 1 AT

00 0 0

be the computed solution to the structure from motion problem. Then the following
relationships hold

fl lZT =1Z (32)
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* T Ars (33)

PT = APS (34)

I where A > 0 is an unknown scale factor. The above relationships reflect the fact that,
without additional assumptions, the depth can only be determined to within an unknown
(positive) scale factor.

We now make the additional assumption that the object is accelerating solely due to
a constant external force of known magnitude, and show how the scale factor may be
recovered. This, in turn, allows the true chronogeneous matrix, and hence the absolute
parameters of motion, and the absolute distances to points on the object to be recovered.
This assumption is reasonable for certain objects, such as a falling apple, or a cannonball
(neglecting air resistance). Such objects are undergoing "ballistic" motion. The object
may be rotating, but in order for the motion to be chronogeneous, the direction of the
axis of rotation must be aligned with the direction of the external force (gravity in this
case). In other words, the axis of rotation must point either "upward" or "downward",
with respect to the force vector. In order to determine the scale factor, we use tup fact
that the magnitude of the acceleration is the same in all inertial reference frames. In the
following, let g be the acceleration due to the external force.

For the general case of rigid chronogeneous motion, we have from equation (18):

g = IYTI
= I - (ATTrT)/TI~= I - (As.C Ars))lAfl

= IA(As.s)/TI
* and therefore A= Ig Tl(As.r5 )l = gATll~s'rsl (35)

3 For the subcase of pure acceleration, the above equation holds if we identify the axis
of rotation, and the axis of acceleration. However, a more direct derivation is possible.
From equation (27):U~ = 17T1 = IIFTIIAT = II~rsI/AT = AIllrsll/i T

and therefore
A A=gATIJif 5II (36)

3 3.9 Conclusion and Future Research

In this section, we present what we see as the major contributions of this research. In
addition, we discuss related current and future research of the author.
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U The first contribution of this research is the general nature of the representation. A
fairly large and interesting class of motion may be represented. Rotation, translation,
and fixed axis motion, as well as (possibly restricted forms of) acceleration are all repre-
sentable. Furthermore, the represention of rigid and nonrigid motion is unified.

Chronogeneous transformation matrices also provide a compact representation of a
fairly large class of camera/object motion, and allow the efficient computation of the
motion of computer generated objects. It is straightforward to calculate a chronogeneous
matrix given the underlying motion parameters, and vice versa. Chronogeneous coordi-
nates should thus prove very useful in the fields of computer graphics and animation.

Next, this research unifies the representation of camera and object motion. The coor-
dinate transformation vector equation provides the connection between the two. Previous
researchers have studied problems involving either camera motion, or object motion, but
not both simultaneously. Sometimes the distinction between the two has been ignored.
This is mainly because so much research has been devoted to the analysis of the two
frames case, where camera and object motion are confounded. It is only when at least
three frames are available that these two motions can, to a large extent, (locally) be
disambiguated.

Finally, this representation models physically natural motion. The importance of
this fact is that, by taking advantage of the constraints imposed by the spatio-temporal
continuity of such motion, we may be able to (and for chronogeneous motion are able to)
solve the structure from motion problem using fewer points and/or frames than when only
rigidity is imposed. Furthermore, structure from nonrigid motion may also be studied.

The author is currently working on solving the structure from motion problem for
an object undergoing constant chronogeneous motion. Details of the solutions will be
presented in a future paper.

Also, the coordinate transformation vector equation expresses the motion of a point
in terms of the camera chronogeneous matrix, and the object chronogeneous matrix.
Solutions to this equation will allow the simultaneous recovery of camera and object
motion, to within certain inherent ambiguities.

Finally, as a further research problem, it should be possible to estimate the coefficients
of the chronogeneous matrix using Kalman filtering techniques. The parameters of motion
could then be determined using the equations developed in this paper.
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UA Useful Formulae Involving Standard Chrono-
geneous Matrices

In this appendix, we derive formulae for the product of two standard chronogeneous
matrices, the inverse of a standard chronogeneous matrix, and the powers of a standard
chronogeneous matrix. Standard chronogeneous matrices are closed under each of these
operations, and therefore form a group under matrix multiplication.I
A.1 Formulae for Matrix Products

I Let
SA irA PA_

CA= O 0 1 RA

and let

ICB= [ 0r0i1#R
T hen 

0 Ol 0 1 1

r OSSB SAfE + fA SAPE + rA 6 tE + PA
CACB = [S -0OOO 1 ,tB+StA ]

L 0o01 1J
and

SBSA SB12 A + fE SEPA + I'E~tA + PB]
CECA = 000 1 StA + 6 t R

UStandard chronogeneous matrices are, in general, not commutative.

For the special case of the matrix 7,
* rc=[0g0 og o 1~+

T0 000 1 6t+AT

and

S f IfAT+P'
* cT=[ O1O 0 11 AT+,St

SOlO o0 0 11
The matrix T does not, in general, commute with other standard chronogeneous matrices.
However, it does commute if F = 0.
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l A.2 Formulae for the Inverse of a Matrix

If the deformation submatrix, S, of a standard chronogeneous matrix, C, is invertible,
then the inverse of C exists and

* = [-s-S r -s- (SP - 6t)]
C-1: o 0 0- 1 -6

I The above formula may be verified by multiplying the matrix and its inverse. Remember
that for a rotation matrix, the inverse of the matrix is simply its transpose. Therefore,
when S is a rotation matrix, call it RZ, the formula for the inverse becomes:

IiTj -JZ(. - 1'St)

l 0 00 1 1
[0 00 10 1 ]

If S = 13, the formula simplifies to:

C-1 0 o0 0 1 -6tU01010 10 1 J
As a special case, the inverse of the matrix T is given by

i 1000 0
0100 0

T = 0 0 1 0 0
0 0 0 1 -AT
0 0 0 0 1

i A.3 Formulae for Integer Powers of a Matrix

The formula for an arbitrary integer power (> 2) of a standard chronogeneous matrix is
given below. This formula is easily proved by induction.r s- I -1 ,

C 0 0°0 1 i6 /t
[0100 10 1]

mm[i-1 i-1 i-2

I = [ ~Si (ZSk)f (ZSk1i +(Z~i-1- k)Sk)if6t

0 0 1i6tmo1 o o o 1
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where we use the convention that the 0th power of a (3 x 3) matrix is the (3 x 3) identity
matrix, 13, and the following recurrence relations hold:

lSi+1 = (S)S,

Pj+, = sP. + f (i6t) + P

If S = 13, then the above formula simplifies to
13- 1 if ii; + 1i(i -1)f~t]

Ci= 0 00 1 i6t

0_ 0000 10 1

and .holds for ".ll i > -1. Here we use the convention that the 0 th power of a (5 x 5)
matrix is the (5 x 5) identity matrix, Is. The following analogous formula holds when
i < 0:

17." [if ii - 1i(i + 3)rbtii 0°l0oo0o 1 o
The formula for an arbitrary power of the matrix T is simply:

1000 0
0 1 0 0 0

T'= 0 0 1 0 0
0 0 0 1 iA T
0000 1

This formula holds for all integer powers.

A.4 Special Matrix Forms

Let W" be the purely spatial and time independent rigid chronogeneous transformation
defined as

0o0 1 0
000 1

Then
1?-T 61 _.RTf

S 40 0 0 1
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IHand the following relationships hold:

'RS lri I+
lc = [0 001 1

0 00 01

*ZT iz0 T %ZT (P )1-l =[ oloo 01 1' J
= oool I  bt7 7-I [0 06 0 0 1

0100 10 1

rn T SR TZ 'i jT(p + (S - 173 )j)
fL = o 1 6t

0O1010 1

If S = 13, then the last two equations may be simplified as follows:

WWoo 1 1 6t

I -' /010 10 1 0 1

The following form is useful when Stc = AT:

-1 s-1f -s-I
0 0 0 0 1
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I 4 SPATIO-TEMPORAL ANALYSIS OF AN
IMAGE SEQUENCE WITH OCCLUSION

Motion understanding is one of the most important visual functions, and has numerous
applications in robotics and industrial automation. The information extracted from this
process include segmentation, range, velocity, and so on. Motion therefore plays a basic
role in the understanding process. It seems very reasonable that animals have perceptual
systems or subsystems purely based on motion [25]. Some animals are known to shake
their heads to gather information for hunting. Visual processing is neither a pure bottom
up processing nor a pure top down one. Communication and feedback are necessary
between high level and low level processing. In this paper, we try to identify and simulate
a low level, local mechanism for motion detection.

The method to perform motion detection and understanding introduced in this paper
is basically domain independent. It is able to calculate flow from discrete images and
to separate objects based on their motion alone. The procedure developed here is not
computationally intensive, and the information needed is only local in nature, making a
VLSI implementation possible [15].

The following assumptions and restrictions are made regarding the observed sequence

of images [20]:

1. Maximum velocity
the operator is only sensitive to a finite range of velocity. An object can move at
most V.dt between two images taken dt time units apart,

2. Small velocity change
it is a consequence of physical laws and the assumption of high sampling rate,

I 3. Small shape change
each object is either rigid or is changing its shape slowly,

I 4. Common motion
objects are spatially coherent and therefore appear in images as regions of points
sharing a common motion,

5. Causality
* objects cannot appear or disappear suddenly.

The principle behind our approach is to find the velocity components of an edge point
along several different directions and estimate its normal velocity, that is the velocity in
the direction normal to the direction of the edge, subject to the constraints listed above.

*I 48

I



I
I

I The next section is a brief review of previous work in motion analysis, in which
three different approaches are discussed and compared. In section 3, the basic idea of
combining spatial and temporal information is introduced. The method we are proposing
to segment objects from a sequence of images is discussed and formalized in the section
as well. Several results are given in section 4 to illustrate how the method works. There
are results on both synthetic and real image sequences. Finally, a summary of remarks
is contained in section 5.

I 4.1 Previous Work

Motion analysis is a strong research area in computer vision. The key to understanding
image sequences lies in the analysis of differences and similarities between consecutive
time frames. The approaches taken differ in the type of primitives used for matching, the
criteria used to resolve ambiguities and the number of frames in the sequences. There
can be broadly classified as follows:

I
4.1.1 Feature-based approaches

I This approach is probably the most intuitive if identifiable spatial features can be ex-
tracted and then the correspondences are possible to establish. A variety of possible
features have been tried: points, line segments [17], blobs, local edges [121, vertices [2],
local maxima of variability [3,181, local statistics [25], extrema of the local grey value
curvature [7], corners[6,24], regions [21,27] or even recognized objects. Good features are
those which can minimize the effect of illumination and geometric changes. The higher
the level of descriptions at which matching is attempted, the less ambiguous the matching
process will be, but this gain may be offset by the errors and deficiencies of the current
programs producing those descriptions. The sampling rate may be large as long as the
features are still present in the images. The accuracy is high if a sharp and localized
feature is tracked, but such a desired feature may be hard to find.

The extracted features of images are then matched to calculate a set of disparity
vectors for the sequence. The correspondence is established based on a metric affinity
function as well as a group mapping criterion. The best match is found based on an
optimization criterion. Criterion functions can range from simple cross-correlation [9] to
sophisticated graph-matching procedures [12]. The matching process is computational
expensive. Methods such as coarse-to-fine resolution matching [10] may be used to speed
up the process.
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I 4.1.2 Intensity-based approaches

I This approach can be subdivided further in three:
The first type is a differencing scheme which is done by subtracting one image from the
other and thresholding the result. The clusters of points in the difference image cor-

I respond to moving objects. By ignoring the stationary background, the computational
resources are focused on the moving objects [14]. This scheme prefers large motion so
that the interesting objects are far enough not to overlap in position in different images,
because the interior of homogeneous regions do not generate a difference. It fails when
the observer is moving or when the illumination is not constant.

The second type is a correlation scheme. A patch of the image is used as a template
and cross-correlated with other images. The peak value indicates a match in intensityH and defines a disparity for the image patch [13]. This scheme suffers from the following
limitations [17]:

1. It requires the presence of a detectable texture within each correlation window, and
therefore tends to fail in featureless or repetitive texture environment.

2. It tends to be confused by the presence of a surface discontinuity in a correlation
window.

3. It is sensitive to absolute intensity, contrast, and illumination.

4. It gets confused in rapidly changing depth fields (e.g., vegetation).

The third type is a gradient scheme which is widely used for the calculation of opticalI flow [8]. If I(z, y) denotes the intensity function of the image, then the following holds:

where L is the temporal intensity change at position (x,y); G. and G. represent
the intensity gradient at the image point; and u, v are local velocities in the x and y
directions, respectively. Since Lt, G. and G are all measurable by the observer, u and v
can be determined by the above relation.

Anandan suggested a framework to compute dense field of displacement vectors with
associated confidence measures [1]. In general, intensity-based approaches are faster at
the cost of high data volume. The images must be analyzed for every few pixels ofH displacement, which means a high sampling rate. This approach allows complex shape
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H Figure 4-1: Features of Objects

changes and introduces the many-to-one match problem. It is also very noise sensitive
and less accurate due to ambiguity of local measurements. A VLSI analog circuit wasI designed at Caltech to implement equation (1) (26]. The local ambiguity due to the
aperture problem is handled by a constraint-solving circuit.

An interesting experiment demonstrates that theffeature-based approach is a high level processing while the other one is low level [221, see
fig. 4-1. A solid square is shown in the center against a dark background and is then
replaced with an outline square on the left and a solid circle on the right.

The viewer who is confronted with these images usually sees the square moving to-
ward the circle rather than toward the outlined square, but when the images are presented
slowly and there is time to scrutinize the image, then the perception is that the square
moves to the outline square. This suggests that regions of low spatial frequencies (smooth
intensity change) are more likely to be detected initially, which would suggest that inten-
sity processing is performed by a preprocessor.

4.1.3 Image-sequence-based approach

There is still another approach using a sequence of closely spaced images. This approach
has received little attention until recently because of the huge amount of storage and
computation involved. A solid of data called ipatio-temporal data, with time as the third
dimension, was introduced by Bolles and Baker [4]. It is*constructed by a sequence of
images close enough that none of the objects moves more than a pixel or so between
frames. The epipolar-plane image, or EPI, is a slice taken from the spatio-temporal data
along the temporal dimension. They used EPI to simplify the matching phase in stereo
analysis. Consider a simple lateral motion in which a camera moves from right to left
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E along a straight track and takes pictures at constant distance with its optical axis or-
thogonal to its direction of motion. Any feature point P describes a linear trajectory on

I the EPI because the only motion is horizontal and constant. The slope of the line deter-
mines the distance from the point to the camera. Occlusion is also immediately apparent
in this representation. Those linear trajectories are then extracted by a non-directionalE Laplacian-Gaussian filter which treats the time domain the same as the horizontally spa-
tial domain. Therefore the edge features are mixed with the intensity discontinuities due
to occlusions. An extended work using projective duality is proposed in [161, which is
expected to generalize the linear camera motion to an arbitrary one. This will still be
applicable only if the camera path is known, and if the scene is frozen. To generalize
this idea for motion analysis, consider the case where the camera is fixed. The motion
of an image point still gives a continuous trajectory in the spatio-temporal data but it
is not necessarily to be a straight line and, in general, does not fall on any EPI. A new
approach is to be discussed in the next section to recover the trajectory called a path
in order to derive the motion information. In contrast to some previous methods which
require the acquisition of the complete spatio-temporal volume before processing is done,
the method described here provides estimation after a few frames, and refining them as
more frames come in. It therfore makes better use of storage and processing is faster.

E 4.2 Description of the Approach

I From many biological experimental evidences, the primitive animal visual processing can
be modeled as a nonlinear system which is a function of time and space. The system
function is basically a composition of a spatial bandpass filter and a temporal bandpassIfilter. The central frequency and bandwidth define the range and sensitivity of its motion
detection ability. The filtering effect permits to find the highest correlations in both
temporal and spatial domain.

The goal of this paper is trying to devise a primitive parallel process which is able to
extract motion information locally from the intensity image. The extracted informationH is passed to the higher level for a globally consistent interpretation.

4.2.1 Basic Idea

In many low level biological visual systems, edges are always one of the most useful
features detected by the front-end preprocessing. When we look at a scene with moving
objects, we are first alerted by the moving edges and then the movements propagate into
the interior of the corresponding regions. At this moment, our internal representation of
the scene becomes a bunch of surface patches associated with velocities. Those surfaces
may be matched with our internal models to recognize moving objects. Motion is not the
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Figure 4-2: A slice from the sequence

only cue humans use to visualize the world, but some other life forms do rely on motion
exclusively, e.g. the predacious activity of the frog. They prey only on moving worms or
insects and their attention is never attracted by stationary objects.

The motion information we want to extract is the normal flow associated with the
edge elements. The aperture effect restricts us so that only one component of the motion
in the 2-D image can be estimated.

I Assuming a dense image sequence is available, the method chosen for the normal flow
estimation is basically a spatio-temporal analysis on the slices constructed from the image
sequence. A slice is a coll-etion of L 1-D images of width 2W taken from L successive
frames in the sequence at the same position, see fig. 4-2. It can be displayed as an
image, the vertical and horizontal axes corresponding to the time and spatial directions

I respectively.

This spatio-temporal data structure provides an easy way to trace a line segment
through frames. Assume there is an edgel P on a line segment under translation V in

frame i, it moves to P' in frame j. If we construct a slice centered at P with inclination
0, the 1-D image in the jth frame picks up another point P" because in general the
orientation of the slice is different from that of the translation V, see fig. 4-3.

Since we as.-ume high sampling rate, there are points between P and P" corresponding
to the line segment in frames in between, the sequence of those points is called the path
of P in the slice . The slope of the path gives an estimate of the speed form P to P",

VO P" - P =AX
ve- - m

tti Yt
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The longer the path can be traced, the better the estimate of V. Therefore all the
V estimates are associated with a confidence factor proportional to the length of the
corresponding path.

V alone is not enough to determine the real velocity V, it only provides a constraint
that the projection of V onto the normal of the normal of the line segment should be the
same as the component of V. along the normal direction. Let a be the inclination of the
line segment and 3 be the orientation of V, then we have the following relation

v = IIV 11 sin (a -- /3)

sin (a - 8)

I The orientation of the 1-D image, 8, may be arbitrary, we choose the most convenient
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I four orientations: -450, 0*, 450 and 90° . The corresponding slices are called S-4s, SO,

S45 and S9o, see fig. 4-4.

For each edge point detected by the Canny edge detectur [5], four slices are constructed
with all the 1-D images form frame 0 to frame L - 1 centered at the position of the edgel
in frame 0. The velocities estimated from the slices fall on a line in the velocity space,
see fig. 4-5. We can simply fit a line to the velocity points based on least square error

weighted by the confidence factor, and find the perpendicular vector from origin to the
line. The perpendicular vector is the normal velocity N and the fitted line is called the

I constraint line. Although two slices are good enough to determine the constraint line, we
use four to reduce the chance of alignment in a digitized process.

Besides the slope, the topology of paths in a slice also gives important information.
In fig. 4-6 (a), the-line segment to which the edgel P initially belongs, will occlude some
other line segment z. unit length away from P along the direction 0 at time tj. The
same message is carried in figure 4-6 (b) except that the two lines are moving in opposite

direction in (a) while both are moving in the same direction at different speed in (b).
Figure 4-6 (c) and (d) show that P is on a line segment about to be occluded.

Figure 4-7 shows the cases of disocclusion, in which a new line segment shows up at
the position Zd unit length away from P along the direction 0 in the jth frame. The new
line segment is slower than the current one in (a), faster in (b) and moving in a different3 direction in (c). Figure 4-8 shows some examples when a corner is encountered. Corners
are worth noticing because they can give both velocity components of the motion.
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E 4.2.2 Segmentation based on motion only

Once we have the normal flows assigned to the edge points in a frame, the next step toward
image understanding is the interpretation of the flow field, which can be subdivided into
two stages, the first of these is to segment the edge points into contours and the second
stage is to find the real velocities of the objects whose boundaries and surface markings
give rise to those contours.

To segment edge points in an image frame without any a priori knowledge, problems
may occur when there are more than one objects moving and occlurion and/or disocclu-
sion take place. If one object is moving in front of another object then edge points on the

boundaries of the rear surface will either be occluded or disoccluded during this move-
ment, depending on whether the front object is moving to cover or uncover the object
behind it.

The contours close to where the occlusion or disocclusion takes place will always form
a three-way junction, where 2 branches belong to the front object while the third belongs
to the rear one. One image frame along is not enough to tell which two branches go
together. When we process the slices as mentioned in the previous section, the particular
Y or A shape paths will be noticed. Therefore, we can predict where and when the
occlusions or disocclusions will happen, and send messages to the image frames to mark
the places to watch out for occlusion or disocclusion.

Each frame will receive several messages from an earlier image frame if there exists
occlusion or disocclusion in the frame. Besides the location, the messages also give the
dominant velocity within the spots of occlusion or disocclusion. The dominant velocities
is the velocity of the motion of the front object along the inclination of the slice, i.e. the
slope of the crossing path which terminates the other. Now the segmentation becomes
easier because the ambiguity of the three-way junctions is resolved. Whenever we trace a
contour and get into an occlusion or disocclusion spot, we can use the similarities among
the three branches to the dominant velocities to determine whether to break or extend
the contour. Our segmentation program tries to generate contours as long as possible.

4.3 Computing the Correct Velocity Field along a Contour

The segmented contours are associated with the normal flow estimates of each point. An
additional constraint is used for the integration of local motion measurement to compute
the two-dimensional velocity field: the constraint is a smoothness constraint to minimize
the variation of the velocity measurement along the contours, because the velocity field
across a physical surface is generally expected to be smooth. The velocity field of leastfl variation is in general not the physically correct one, however it is often qualitatively
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I Figure 4-9: Illustration of the notations

E similar to the true velocity field. When the two velocity fields differ significantly, it
appears that the smoothest velocity field may be more consistent with human motion
perception [11]. The particular measure of variation we choose is fc J' da: the integral
of the square of velocity change along the contour.

If there exists at least two edge points at which the local orientation of the contour
is different, then there exists an unique velocity field that satisfies the known normal

817
velocities and minimize f' c - ds. Since we have only discrete points, the first in the
design of the algorithm is to convert the continuous formulation into a discrete one.

Assume that the contour has n edge points on it, { (Xo,yO), (XI,yi), ... , (2,-,?Yn-1)
}. For each edge point, (Xi,y,), see fig. 4-9, we have an estimate of the normal veloc-
ity represented by the magnitude of the normal velocity, Ni, and the direction normal,
In21 , ny1 ], perpendicular to the contour. We want to find a list of velocities, { (Vxo, Vyo),I(VX 1 , VyI), ... , (Vz,_l, Vy,-1) } which minimize the variation,

n-1

~[(Vz, _ VXz_ 1 )2 + (VY1 _ Vy,_1 )2] (2)

and satisfies the constraint that the component of the velocity in the normal direction
equals the estimated normal velocity,

Vx V - nji+ Vyj nj= Ni, i = 0... n-1 (3)

To loosen the constraints, equation (3) does not have to be exactly satisfied. Therefore
the energy function, 0, is defined as a linear combination of the above two equations,
which is
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n-1

+-Y Z[Vi -ni + Vyi -nyi-_Ni 2  (4)
i=O

To find out the set of velocities { (Vxo, Vyo), (Vz 1 , Vy1 ), ..., (Vzn., Vy,,_,) } whichU minimizes the energy function in equation (4), one can take partial derivaives of 0 with
respect to Vxi and Vyi, where

S=0, and

= 0, for i = 0 ... n-1 (5)

U /From equation 5 we have 2n linear equations for 2n unknowns. We can use any
method to solve the linear system as long as not all the edge points are on a straight
line. The method we choose is a cor.ugate gradient algorithm, which finds a solution in
2n iterations with the ini'ial guess Vz, = Ninzi and Vy = NJini.

I 4.3.1 Higher level motion processing

After the segmentation and variation minimization, we have a set of contours associated
with velocity estimates along them to represent the optical flow field in the dynamic
scene. A great deal of information could be picked up from the flow field even without
invocation of high level processing like object recognition. For example, the flow field is
rich enough to support the inference of collision when a robot is moving in an unknown
place, or to locate the focus of ezpansion for navigation.

The contours also outline the surface patches. With the velocities of the surfaces and
their spatial relations in the two-dimensional scene, their three-dimensional structures
and the three-dimensional motion may be determined.

In particular, it should follow that, away from the boundaries, adjacent pixels should
have similar motion, pixels corresponding to the same physical location should have
similar intensities, and the resulting path should be smooth [23]. Therefore the velocities
assigned to the contours can be propagated into the interior of the surface, using Nagel's
formulation [19] for instance, to generate a dense velocity field. We still have to make
sure that the contour segments correspond to correct c bject boundaries. Otherwise the
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I Figure 4-10: Synthetic Sequence of Two Rectangles

U velocity fields might bleed into other irrelevant regions, which happens often if occlusion
or disocclusion are not handled correctly.

E 4.4 Results

n We have generated a sequence of synthetic images for the purpose of testing and illus-
tration, in which there are two rectangles, see fig. 4-10. The longer axis of the leftmost
rectangle makes a 300 with the x axis. It is moving in the north east direction half a pixel
per frame, while the right rectangle is moving in the north west direction with the same
speed. The first and twelfth frames are shown in fig. 4-10 (a) and (b). A typical examplei of the slice analysis is shown in fig. 4-11, in which an edge point on the lower left bound-
ary of the left rectangle in the fourth frame is processed. The four slices are in the upper
right pane while the right hand side shows the result of edge detection on the slices. TheI lower right pane shows the velocity points in the velocity space and the constraint line
fitted to them, and the normal velocity assigned to the edge point. Figure 4-12 shows the
normal flow by collecting all the estimates of normal velocity for edge points in the fourth

I frame. Figure 4-13 shows the result after segmentation and variation minimization. The
fourth frame got several messages passed from previous frames and located the places of
occlusion so that physically related edge points are grouped together. In this example,I there are only two contours and the variation minimization algorithm is applied to both
of them separately with -f = 0.01. The constructed velocity field is very close to the real
value both quantitatively and qualitatively.

The next example is a real image sequences from SRI1 , in which the camera is moving
forward in a lab. We only use a 32 by 32 window containing some palm leaves, since a
small window is already good enough to demonstrate this local process. The first frame
of the sequence with the window boundary highlighted is shown in fig. 4-14. The final

'Courtesy of Dr. Baker and Dr. Bolles
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Figure 4-16: SRI Sequence: Hallway

i result of segmentation and variation minimization is shown in fig. 4-15. Since the camera
is pointing at some point to the right of the window while it moves, the sequence looks
like the leaves are moving towards the viewer and passing by his left hand side with a
little expansion. The last example is an image sequence taken by a robot while it is
moving down a hallway. We choose a 64 by 64 window of the scene containing a chair
against the wall, see fig. 4-16. The segmented contours and variation minimized velocity
flow is shown in figure 4-17.

4.5 Conclusion

We have presented a spatio-temporal approach to solve the early processing problem
of motion analysis, which can handle scenes of multiple moving objects with occlusion
and/or disocclusion. The characteristics and advantages of this method are as follows:

I
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mmFigure 4-17: Segmented Contours and Velocity Field with 7 f 0.01

mm1. Par'a/e/Processing in the Spatial Do ain

The slice analyses of the edge points are independent so they can proceed in par-
allel. Assuming that there is a 2-D SIMD array as large as the image with each

l entry of the array an identical processing element, each processing element has a

memory L words long and is able to talk to its neighbors Wi steps away in eight di-
rections. All the processing elements can construct their slices at the same time via

mm local communication and analyze the slices concurrently. This property promises

a hardware implemc'ntation with identical units performing the same operations in
parallel.

2. Pipeline Processing in the Time Dimension

The slice analysis only takes L frames. Each time we pump in a new image frame, it

is distributed ovrthe entire aryand each prcsigelement sipyfetches the

corresponding pixel and gets rid of the oldest one in its local memory. W2Vhile the
m array is working on segmentation and variation minimization of the current frame,

the slice analysis can be invoked to work on the next frame.

3. Symbolic Scene Description
mm The segmentation of moving objects are generated frame by frame, in which the

contours provide the skeleton of the scene while the velocity field gives their relations
mm over frames. Therefore, our process extracts suitable information for higher level

interpretation process.
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I 4. Occlusion and Disocclution
Our method is able to identify occlusion and/or disocclusion, which is very impor-
tant to circumvent ambiguity.

5. Incremental Process
Our method can be extended such that after having processed a few frames, thesystem is able to predict the path in a slice. The predicted value can either reduce
computation time or lead to better estimation.

I Finally, with those benefits, one more point the authors would like to state is the
liberal assumptions of this work. The assumptions are few and yet need to be looselyf satisfied. Although the high sampling rate assumption allows us to approximate any
short trajectory of movement by translation and approximate any portion of the object
hundary by piecewis: straight line, we want to extend this work to handle rotation and
motion at varying speeds. The only change is to allow curved paths in a slice instead of
purely straight lines. The only ambiguity is that the paths for motion at changing speed
and for curved object boundary are both curved. More work is also required to study the
effects of quantization and noise sensitivity in a larger number of real image sequences.

IReferences
[1] P. Anandan, " A Unified Perspective on Computational Techniques for Measurement

of Visual Motion," Proceedings of Image Understanding Workshop, Vol. 2, February
1987, pp. 719-732.

[2] M. Asada, M. Yachida, and S. Tsuji, "Three dimensional Motion Interpretation for
the Sequences of Line Drawings," Proceedings of the International Conference on
Pattern Recognition, 1980, pp. 1266-1273.

[3] S. T. Barnard and W. B. Thompson, "Disparity Analysis of Images," IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, Vol. 2, No. 4, July 1980, pp.
333-340.

[4] R. C. Bolles and H. H. Baker, "Epipolar-Plane Image Analysis: A Technique for
Analyzing Motion Sequences," Proceedings of the Third Workshop on Computer
Vision: Representation and Control, Bellaire, Michigan, October 1985, pp. 168-178.

[51 J. Canny, " A Computational Approach to Edge Detection," IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, November 1986, pp.
679-698.

65

I



I

I [6] L. S. Davis, Z. Wu, and H. Sun, "Contour-Based Motion estimation," Computer
Vision, Graphics and Image Processing, Vol. 23, 1983, pp. 313-326.

U [7] L. Dreschler and H.-H. Nagel, "Volumetric Model and 3-D Trajectory of a Moving
Car Derived from Monocular TV-frame Sequence of a Street Scene," International
Joint Conference on Artificial Intelligence, Vancouver, Canada, August 1981.

[8] C. L. Fennema and W. B. Thompson, "Velocity Determination in Scenes Containing
Several Moving Objects," Computer Graphics and Image Processing, Vol. 9, April
1979, pp. 301-315.

[9] D. B. Genery, "Object Detection and Measurement Using Stereo Vision," Proceed-
ings of the 6th International Joint Conference on Artificial Intelligence, August 1979.

[10] F. Glazer, G. Reynolds and P. Anandan, "Scene Matching by Hierarchical Correla-
tion," Proceedings of Computer Vision and Pattern Recognition, June 1983, pp.432-
441.

f [11] E. C. Hildreth, "The Computation of the Velocity Field," Technical report 734,
Massachusetts Institute of Technology, September 1983.

[121 C. J. Jacobus, R. T. Chien and J. M. Selander, "Motion Detection and Analysis by
Matching Graphs of Intermediate Level Primitives," IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 2, No. 6, November 1980, pp. 495-510.

[13] R. Jain and H.-H. Nagel, "On the Analysis of Accumulative Difference Pictures from
Image Sequences of Real World scenes," IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 1, No. 2, April 1979, pp. 206-214.

[14] R. Jain, "Extraction of Motion Information from Peripheral Processes," IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, Vol. 3, September 1981, pp.
489-503.

[15] S. Y. Kung, "On Supercomputing with Systolic/wavefront Array Processors," IEEE
Proceedings, Vol. 72, No. 7, July 1984, pp. 867-884.

[16] D. H. Marimont, "Projective Duality and the Analysis of Image Sequences," Pro-
ceeding of IEEE Workshop on Motion: Representation and Analysis, May, 1986, pp.
7-14.

I [17] G. Medioni and R. Nevatia, "Segment-Based Stereo Matching," Computer Vision,
Graphics, and Image Processing, Vol. 31, 1985, pp. 2-18.

I
*I 66

I



I[18] H. P. Moravec, Obstacle Avoidance and Navigation in the Real World by a See.
ing Robot Rover, Ph. D. dissertation, Stanford University, 1980, also available as
Carnegie-Mellon University RI-RT-3, Robotics Institute.

[19] H.-H. Nagel and W. Enkelmann, "An investigation of Smoothness Constraints for
the Estimation of Displacement Vector Fields from Image Sequences," IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 5, September 1986,
pp. 565-593.

I [20] J. M. Prager, "Segmentation of Static and Dynamic Scenes," Technical Report TR
79-7, Dept. of Computer and Information Science, University of Massachusetts, MayU 1979.

[21] K. Price and R. Reddy, "Matching Segments of Images," IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 1, No. 1, January 1979, pp. 110-
116.

f [22] V. S. Ramachandran and S. M. Anstis, "The Perception of Apparent Motion," Sci-
entific American, June, 1986, pp. 102-109.

[23] I. K. Sethi and R. Jain, "Finding Trajectories of Feature Points in a Monocular Image
Sequence," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
PAMI-9, No. 1, Jan. 1987, pp. 56-73.

[24] M. A. Shah and R. Jain, "Detecting Time Varying Corners," Computer Vision,
Graphics, and Image Processing, Vol. 28, 1984, pp. 345-355

[25] W. E. Snyder, "Computer Analysis of Time Varying Images," Computer, Vol. 14,
No. 8, August 1981, pp. 7-9.

I [26] J. Tanner and C. Mead, "An Integrated Analog Optical Motion sensor," IEEE ASSP
Society Workshop on VLSI Signal Processing, II November, 1986, pp. 59-76.

[27] T. D. Williams, "Depth of Camera Motion in a Real World Scene," IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, Vol. 2, No. 6, November 1980,
pp. 511-516.

67



I

* 5 INTEGRATION EFFORT IN KNOWLEDGE-
BASED VISION TECHNIQUES FOR THE

* AUTONOMOUS LAND VEHICLE PROGRAM

S Over the past several years the USC Computer Vision group has developed a number of
component programs that can be applied to motion analysis in the Autonomous Land
Vehicle (ALV). Thus, we have a number of separate programs (or collection of programs)
developed by different people for different computer vision tasks [1), [2], [3], [Section 2
of this report] with no strict requirements imposed on the developers as to what input,
output and program parameters should be used. We will use the word module to referU to a collection of programs that are solving a particular task from the computer vision
domain (for example, a collection of programs that find depth of environmental points
using a pair of stereo images). Our current task is to construct a control structure that
will use these different modules and enable them to cooperate in visual guidance of an
ALV using general motion analyzing techniques.

We consider the integration to be an important effort for several reasons. Different
feature extraction or matching techniques may work best in specific circumstances, thus
a variety of modules for similar operations are necessary. Additionally, it is too costly
and time-consuming to reprogram current modules into a coherent and unified computer
vision program. Even if we would succeed in this effort, we would lose the generality of
using the same basic modules for multiple applications. By using a variety of modules
for similar operations (e.g., feature matching) we will develop techniques that can more
easily accept other, newer, modules for the same or related processing steps. Therefore,
we prefer using the current modules, at the expense of designing a control structure for
them. In order to create the task configurations we must understand how the modules
interact and the type of interfaces needed between modules.

* The problem we face is not the problem of the top-down design which had divided the
task into subtasks that will be later linked together. There, predetermined data structures
enable easy module integration. We did not influence the design and the interaction of
modules, although the modules may had been developed for similar domains end therefore
could share similar input data.

There are several important issues we had to address in the integration effort. We
chose not to create a completely general control structure and interface (such as a black-
board) because of the desire to quickly incorporate current results in component devel-

* opment. Here we present these issues in general terms and will later give some examples
and initial results.

1. If we know how to combine different modules (in principle) what is it that we have
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to do (in practice) to make the combination of the modules work together? We call
this an interface problem. The question is then to design interfaces in a manner
that hides details of implementation of one module from another module without
loosing the capabilities already present in either module.

2. How are we going to judge the performance of the combined modules once they are
"sewn together?" If a human operator must assess the performance of the modules
on a particular subtask, we will be not able to combine several modules to work
automatically on a more complex task.

3. Can the system suggest (and eventually generate automatically) a configuration of
the modules that will be the best for a given task? How can we incorporate the
knowledge that people use when choosing a set of programs to perform some visual
perception task?

4. Somewhat related to the previous two issues is: should we strive for a static or
dynamic integration? In a static integration two modules are "hardwired" feeding
input or output to each other (if a feedback is used) but essentially they are forced
to work together independently of the input domain. Dynamic integration links
modules at the run-time depending on the domain, module performances and the
task in question. Dynamic integration is a much more complex problem and we are
not in the position yet to attack this problem.

5.1 Control Structure

In this section we outline the major design decisions that are made in the integration
effort of different motion modules. In the next section we will present our results and the
current state of the integrated software.

In the design of an integrated software for a particular task, the first step is to define
module's input, output, its preconditions (range of parameters), purpose, efficiency, end
expected quality of the results. The next step is the design of the control program, that
will synchronize the work of motion modules. We have used a similar design strategy
for our motion integration package as those found in design of software for automatic
programming, in particular those found in work by Kant [4]. Although the task system is
designed for the domain of motion analysis of the ALV, most of the decisions are equally
applicable to a general purpose vision system.

5.1.1 Design decisions

The system has four major components:
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" The set of routines that specify modules and create a module configuration needed
for particular task (task definitions).

" The set of routines that schedule and execute a particular task (task execution).

" The set of routines that create history of data and control flow. The user can then
examine intermediate results, and rerun tasks perhaps using different modules or
data.

" A user-friendly interface that allows the easy modification of input and output pa-
rameters and the easy design of new task configurations. It also helps in displaying
the history of the run using images and data tables.

For each module we define the module components, function and required input and
output data. We separate functionality of the module from its domain and range, so that
we can create separate data and control flows [5]. This decision helps the user create a
task configuration and build a control structure on top of the latter. Knowledge-based
scheduling and execution require the separation of data and control flow for the same
reason.

Task configurations are represented as graphs in which modules are nodes and paths
are data and/or control flows. Each node (module) can have several input and/or output
data ports because the type of the data required by modules greatly varies. In addition to
the input and output data required for the module, there are also parameters for internal
graphic displays and debugging information from the module. One of the important mod-
ule characteristics is that they can be implemented in different programming languages
(like C and Lisp in our case) and the data ports provide a convepient interface between
these modules.

Modules can be configured using different control structures (loops, sequences, concur-
rent execution, conditional constructs, etc.). This means that we can use data feedback
between modules, use several machines to run modules concurrently if needed, and make
choices about module execution depending on the data they use. The design allows both
forward-chaining and goal-directed reasoning which is needed in a more sophisticated
task scheduling and execution environment.

The task history is a very helpful tool for rerunning the same set of module executions,
examining the data (images, parameters) at each stage of execution, perhaps selecting a
new set of parameters for a new run, and serving as a quick demonstration facility.

Task configuration, execution and history are accessible to the user through the
graphic interface. A powerful graphic editor is used to help the user to: compose and
decompose task configurations; enable task interruption or execution; examine, edit or
save data used or produced at different stages of task execution; edit the global knowledge
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U base; and enable task rerun. The graphics editor also has tools for data smoothing and
data routing and conversion to and from different computational machines.

All the above program decisions are made in order to allow an interactive, user-
friendly, problem-solving motion package that can be later used in a semi-automatic or
automatic way to detect the environmental changes from images. Modularity of the
design enables easy incremental addition or change of modules or data, and a greater
flexibility and efficiency of the whole knowledge-based motion system.

I 5.1.2 Interface problem

In this subsection we discuss issues in creating interfaces between different modules. We
initially have developed a set of specific module interfaces rather than a single data
transfer mechanism so that we can concentrate on computer vision rather than general
system building. The other reason is that we currently have only a few modules for each
subproblem and the design of interfaces between each pair of modules is not a costly
design decision.

The long term effort requires that the interfaces between the two modules are general
enough to handle not only the particular pair of modules, but a pair of classes of modules.
A class of modules has elements that solve one specific problem of the vision, for example,
all the modules that perform straight line extraction will be one class (say class A), and
all the modules that find line correspondences will be in another class (say class B). The
interface between any module from class A and any module from class B will be the same.
The reason for such a design is that we would like to handle lines as semantic entities
and not be concerned with detailed representation of the line.

I The other important issue is a need to design these interfaces for possible use in a
feedback loop. In these situations the output of the second module might be used to

* improve the performance of the modules that provided its input.

Interfaces hide details between the different requirements of different modules. In the
example that we present in the next section, a motion estimation module requires the
position of a region in several frames. On the other hand, a region matching module
returns corresponding regions between two frames. The interface between matching and
motion estimation modules accumulates the pairwise matches until enough are found for
the motion estimation module. In other situations, the interfaces hide the details of data
representation for different modules because we are only concerned with semantic notion
of features and not its representation.

Sometimes an interface must account for missing data, and sometimes it should dis-
card data that are not considered to be essential. We plan to equip the input and output
data structures with procedures that will signal the absence of necessary data, so that
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the missing data could be recovered by calling some other module, or the user.

U 5.2 Results

Our initial implementation provides a working prototype and a baseline system for testing
of the integration framework. It is implemented in an object-oriented language (flavors).
In this implementation, the initial control program that drives different modules is "hard-
wired," .hus avoiding several important issues that usually appear in automatic program-
uing. However, we still had to solve the interface problem. We have also implemented
the most important parts of the user-interface.

As the initial step to integration, and to provide a convenient method to more easily
test the motion estimation system, we have combined modules for feature extraction using
the region segmentation techniques [6], feature matching using our region based matching
system [2], three-dimensional motion estimation [3], and feedback of the image location
prediction to the matching programs. These programs were written by different authors,
without considering the need to integrate these specific programs into one system, thus
some of the effort is required to transform the data produced by one system into data
expected by the next. For example, the matching system provides a symbolic description
of the two input images with links between them and the motion estimation program
only requires a list of point correspondences for several frames. The list of points can be
derived from the matching output.

This initial integrated system demonstrates the ability to combine different subsys-
tems into one unified system. This prototype system has the following tasks (see Figure

* 5-1 for a description of the current system):

* Image input: Read the image sequence.

e . Image segmentation: With large images and for time considerations, a subimage
is segmented into regions by the histogram based segmentation program. These
regions may, or may not, correspond to actual real-world objects, but are assumed
to be single objects for the purpose of motion segmentation. All the images in
the sequence are initially segmented. Features of individual regions and relations
between regions are also computed. One of the features, the center of mass, is used
later in the motion estimation module. This forms the symbolic description of the
image.

1 * Match the first image description to the second: Initially, there is no infor-
mation to guide the match, so the first few matching steps must use the general
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U techniques with features such as intensity, size, shape, adjacencies, relative posi-
tions, etc. This produces a set of corresponding regions where a region in the first3 view is paired with a region in the second view.

" Match the second image description to the third: This step is the same as
the previous one where general features must be used. At this point the translation
estimation module used for generating predictions of future image plane locations
for those regions that are tracked from image 1 to 2 to 3 (i.e., region X in image
1 is matched to region Y in image 2 which is then matched to region Z in :mage
3). The general motion estimation system requires one point in five consecutive
frames, but three dimensional translation can be computed using only one point in
three frames. Thus, the matching through three frames allows the prediction of the
region location in the forth and future frames.

" Continue the matching process for descriptions of image N to image
N+1: Since a motion estimate has been computed for some of the regions, the
predicted position of the region in the next image can be used as a ieature (the
position) in the matching process. This allows greater motions to be easily handled
by the later matches. The motion estimation programs (general estimation for 5
or more frames in a sequence and translation estimation for 3 or 4) are applied on

Seach sequence of matching regions.

The motion estimation results are displayed in several forms at each stage, including
the trajectory mapped back onto the image plane (using perspective projection), an
orthographic projection of the trajectory viewed from the top, and another viewed from
tile side. These three displays are given in Figure 2, with the perspective view showing the
motion of the four regions (grill (3,6), bumper (2,7), front shadow (1,4) and side shadow
(4)) drawn for the six frames in the sequence and drawn on the next-to-last (fifth) frame.
The computed motion projections for all the regions, except the ;ide shadow, are shown
for frames 1 through 5 (labeled 1, 2 and 3) and for frames 2 through 6 (labeled 4, 5, 6
and 7). The two orthographic views show that the motion is completely in the Z and X
directions (see the side view motion where Y is almost constant for each region) and shows
the trajectories of the regions in the correct relative positions. These three-dimensional
trajectories are scaled to the dimensions of the focal plane of the camera since absoluteSscale can not be derived. The positions are also adjusted for the computed relative depth
of the points as shown by the fact that the beginning locations for points 4-6 are closer
to the camera (i.e., Z is smaller) than the beginning locations for points 1-3.

This version of the program was intended only as a test of the current component
interfacing and to provide an outline for the future system.
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5.3 Future Work

As we have seen in the previous section the initial motion integration package performs
region segmentation, evaluates region correspondences not for a single pair but for many
pairs of frames. Then an estimation motion module is called that determines the motion
parameters of the ALV. Major areas for future work include using more feedback from
motion estimation to matching and using feedback from both motion and matching to
segmentation.

We also plan to add in the motion detection system another subsystem that uses a
Hough-transform based module to detect preliminary line correspondences. The later
will provide input to a module for more precise line-correspondences (these two might beU connected via a feedback loop). The results of these two modules are to be fed into a
third module that uses line-correspondences in several frames to detect motion of objects
in the scene. The results on this subsystem will be reported later.

We will use the contour based matching approach [Section 2 of this report] for direct
input to the motion estimation programs and plan to combine it with the region based
matching system. This will allow the detailed matching results using contours to be
computed when the motion between frames is large.

These three examples demonstrate that we have different input situations in mind
(some images suitable for region matching, some for straight, some for curved line match-
ing), and that each group of modules will be used depending on the input data. That is
an example of what is needed in a more general purpose vision guidance system.
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Figure 5-1: Description of Current System
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* 6 FUTURE RESEARCH

For the next year we plan to continue the basic efforts described in this report. This wil
include the completion of the contour matching system and its integration into our basic
motion analysis system. The other efforts are expected to continue, with only partial
completion of each of the projects. In more detail, our expected work for the next year
includes:

The incorporation of our basic motion analysis system into the CMU testbed facility
and/or the Martin-Marietta ALV testbed. This is not an effort to tightly couple our
motion analysis system with the ALV system, but an effort to show that it can operate in
a more realistic environment. We will also continue the integration of the various feature
extraction and matching subsystems with the motion estimation subsystem, by allowing
for feedback of the estimated positions from the motion system to the matching programs.
This also includes the effort to implement a more complete integrated motion analysis
system that has the contour extraction and matching systems in addition to the region
matching systems. This system should provide some depth and structure information in
addition to the motion estimations.

With the increasing availability of motion sequence data, we can demonstrate the
effectiveness of the matching and estimation subsystems on more sequences. This helps
explore the limits of the algorithms and indicate where more efforts are needed to build
a complete system.

The contour based matching system is nearing completion, but we will continue work
to handle much larger differences between images and to track the matching points on
the contour through several frames. The several frame matching is necessary to provide
data to the motion estimation system, which requires matches through at least 3 frames
(and 5 for accurate translation or general motions) for estimation.

This past year we did the theoretical development of the chronogeneous coordinate
representation technique. We plan to begin the implementation of a motion estimation
program using the chronogeneous coordinate representation. The development will build
on our current motion estimation programs, using many common pieces and will enable
the motion system to consider certain accelerations in addition to the other motions.

I
I
I
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